CHEMISTRY LETTERS, pp. 163-166, 1977. Published by the Chemical Society of Japan

SOLVOLYSIS OF BUTATRIENYL HALIDES: EVIDENCE OF AN AMBIDENT VINYL CATION

Shinjiro KOBAYASHI, Takaaki SONODA, and Hiroshi TANIGUCHI Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Hakozaki, Fukuoka 812

The reactions of butatrienyl halides $\underline{4}$ and $\underline{5}$ in aqueous ethanol exclusively gave bis(benzofuranyl)acetylene $\underline{6}$. The first-order kinetics, the leaving group effect, $k_{\rm Br}/k_{\rm Cl}=52$, and the Grunwald-Winstein's m value of ca. 0.5 show that $\underline{4}$ and $\underline{5}$ are solvolyzed by an S_Nl mechanism. The intermediate carbenium ion $\underline{7}$ is a new type of ambident vinyl cations.

Recent extensive studies of solvolysis of vinyl derivatives made it clear the existence of vinyl cations.¹⁾ It was reported that haloallenes²⁾ and 2bromo-1,3-butadienes³⁾ are solvolyzed under milder conditions than vinyl halides because of the resonance stabilization of the carbenium ion intermediates <u>1</u> and <u>2</u>. The occurrence of the rearranged products derived from <u>1b</u> and <u>2b</u> also

supports that these carbenium ions are ambident. Notice that one of the mesomeric structures of these ambident carbenium ions is a disubstituted ion (<u>la and 2a</u>) but the other is a normal trisubstituted ion (<u>lb and 2b</u>). However, the solvolysis of butatrienyl halides might give the ambident vinyl cation <u>3</u> which has positive charge on a disubstituted carbon in both mesomeric structures (<u>3a and 3b</u>). The vinyl cation <u>3b</u> was suggested in view of a stabilized vinyl cation by a triple bond, but has not yet been generated.^{1a}

For the preparation of 4,4-bis(o-methoxyphenyl)-1-[3'-(o-methoxyphenyl)-2'-

benzofuranyl]butatrienyl halides <u>4</u> and <u>5</u>, 1,1,6,6-tetrakis (o-methoxyphenyl)-2,4hexadiyne-1,6-diol was treated with hydrochloric and hydrobromic acid, respectively, in a mixed solvent of acetic acid and methylene chloride⁴. The structures were assigned by the following data: <u>4</u>: mp 154-155 °C; nmr(CDCl₃) & 3.65, 3.71, 3.84 (all s, OCH₃), 6.7-7.6 (m, arom. H); uv λ_{max} 440nm(log ϵ 4.54), 272 (4.44): <u>5</u>: mp 157-159 °C; nmr(CDCl₃) & 3.59, 3.69, 3.85 (all s, OCH₃), 6.6-7.4 (m, arom. H); uv λ_{max} 440nm(log ϵ 4.53), 267 (4.34).⁵)

The solvolysis of both $\underline{4}$ and $\underline{5}$ in 80% aqueous ethanol at 60°C afforded the same colorless crystalline compound <u>6</u>, mp 149-150°C in > 97% yield⁶) from <u>4</u> and $\sim 100\%$ yield from <u>5</u>. The structure of <u>6</u> was assigned to bis[3'-(o-methoxyphenyl)-2'-benzofuranyl]acetylene by the following data: nmr(OCl₄) δ 3.70(s, OCH₃), 6.8-7.6 (m, arom. H); uv λ_{max} 360nm(log ϵ 4.45), 308 (4.32), 238 (4.48). The comparison of the electronic spectrum of <u>6</u> with those of bis(benzofuranyl)acetylenes⁴) confirmed its structure.

The formation of $\underline{6}$ can be explained by the sequence shown in the following scheme. The ambident vinyl cation $\underline{7}$ generated by the solvolysis is

intramolecularly attacked by the methoxy group which is located in the suitable position to form the five-membered ring, followed by elimination of the methyl moiety.

The existence of ambident vinyl cation $\underline{7}$ was supported by the following kinetic experiments. The rates of the solvolysis were measured spectrometrically and the results are shown in Table. Excellent first-order kinetics were observed up to 90% reaction and were not affected with or without base. A comparison of the solvolysis rates of $\underline{4}$ and $\underline{5}$ yields a leaving group effect $k_{\rm Br}/k_{\rm Cl}=52$. This value is similar to those reported for the solvolysis of tris(p-methoxyphenyl)-vinyl bromide and chloride, $k_{\rm Br}/k_{\rm Cl}=58^{7}$ and 1,3-di-tert-butyl-3-phenylallenyl bromide and chloride, $k_{\rm Br}/k_{\rm Cl}=56^{2}$. An increase in solvent polarity results in an increase in the rates of solvolysis. A plot of log k for butatrienyl bromide $\underline{5}$ vs. Grunwald-Winstein's Y value is slightly convex and the slope is ca. 0.5 for 60-90% ethanol. This value is similar to those found in the solvolysis of tris(p-methoxyphenyl)vinyl bromide, m=0.34⁷ and 3-methyl-2-butenyl triflate, m=0.60⁸.

The above results support that butatrienyl halides $\underline{4}$ and $\underline{5}$ are solvolyzed by the S_Nl mechanism via the new type of " ambident vinyl cation " intermediate. It is not easy to mention the stabilization of vinyl cation by a triple bond in this case, because there is no precise estimation of the α -substituent effect of 3-(o-methoxyphenyl)-2-benzofuranyl group.

Further investigation of the solvolysis of butatrienyl halides, which can be compared to those of vinyl halides, is now in progress.

Compound	Solvent	Temp,°C	k,	s	-1			
4	80%EtOH	70.0	6.71			×	10 ⁻⁵	
		60.0	(2.77	±	0.01)			no NaOH
<u>5</u> ^{b)}	80%EtOH	60.0	(1.43	±	0.01)	×	10 ⁻³	no NaOH
			(1.44	±	0.01)			
			(1.41	±	0.02)			0.1M LiBr
	90%EtOH	50.0	1.04			×	10^{-4}	
	80%EtOH		(5.17	±	0.02)			
	70%EtOH		(1.02	±	0.01)	×	10^{-3}	
	60%EtOH		(1.67	±	0.02)			
	80%EtOH	40.0	(1.57	±	0.01)	×	10 ⁻⁴	0.1M LiBr

Table. Solvolysis of Butatrienyl Halides 4 and 5 in Aqueous Ethanol^{a)}

a)k is an average of two or more runs in each at an initial concentration of ca. 3×10^{-5} M the halide in the presence of 10^{-4} M NaOH.

b) The activation parameters for the solvolysis of the bromide in 80% ethanol at 50°C; $\Delta H^{\dagger} = 22.0 \text{ kcal/mole}, \Delta S^{\dagger} = -5.6 \text{ e.u.}$

REFERENCES and **NOTES**

- For general references for vinylic solvolysis, see a) M.Hanack, Acc.Chem.Res., <u>9</u>, 364 (1976); b) Z.Rappoport, Acc.Chem.Res., <u>9</u>, 265 (1976); c) P.J.Stang, Progr.Phys.Org.Chem., <u>10</u>, 205 (1973); d) G.Modena and U.Tonellato, Adv.Phys.Org.Chem., <u>9</u>, 185 (1971).
- M.D.Schiavelli, S.C.Hexon, H.W.Moran, and C.J.Boswell, J.Amer.Chem.Soc., <u>93</u>, 6989 (1971); M.D.Schiavelli, R.P.Gilbert, W.A.Boynton, and C.J.Boswell, ibid., 94, 5061 (1972).
- 3. C.A.Grob and R.Spaar, Tetrahedron Lett., 1439 (1969); C.A.Grob and R.Spaar, Helv.Chim.Acta, <u>53</u>, 2119 (1970).
- 4. S.Kobayashi, M.Shinya, and H.Taniguchi, Tetrahedron Lett., 71 (1971);
 S.Kobayashi, M.Shinya, T.Nakano, and H.Taniguchi, Nippon Kagaku Zasshi, <u>92</u>, 644 (1971).
- 5. All the new compounds gave satisfactory analyses.
- 6. A small amount of a compound was detected by nmr measurement (<3%), and tentatively assigned to be a benzo[b]naphto[1,2-d]furan derivative which was obtained from the thermal electrocyclization of butatrienyl chloride <u>4</u> in DMF at 100°C.
- 7. Z.Rappoport and A.Gal, J.Amer.Chem.Soc., <u>91</u>, 5246 (1969).
- R.H.Summerville, C.A.Senkler, P.v.R.Schleyer, T.E.Dueber, and P.J.Stang, J.Amer.Chem.Soc., <u>96</u>, 1100 (1974).

(Received December 13, 1976)